Internal Migration and Life Course Transitions in Brazil

Reinaldo Santos (reinaldosantos80@gmail.com) Center for Regional Development and Planning (Cedeplar), Brazil

Alisson Barbieri (barbieri@cedeplar.ufmg.br) Center for Regional Development and Planning (Cedeplar), Brazil

> Ernesto Amaral (amaral@tamu.edu) Texas A&M University

Objective and motivation

- We investigate associations between life course transitions and age pattern of internal migration in Brazil between 1986 and 2010
 - Physical and socioeconomic contextual changes affect migration levels
 - Behavioral dimensions in the life course affect migration patterns (Camarano et al. 2003; Campos, Barbieri, Guedes 2010; Cunha 2006; Jannuzzi 1998; Oliveira, Jannuzzi 2005; Rigotti 2008; Santos 2018; Tomás, Oliveira, Rios-Neto 2008)
 - We go beyond by analyzing several life course transitions and flows for different geographical scales
- Internal migration flows have great magnitude and data availability for subnational estimates
 - In 2005–2010, more than 4,000,000 people migrated among the 27 Brazilian states
- International migration did not have a substantial impact on population size and structure
 - In 2005–2010, there were 361,841 immigrants and 336,925 emigrants: net migration of 24,916 individuals (Carvalho et al. 2016)

Life course transitions and migration

Source: Bernard, Bell, Charles-Edwards 2014.

Migration age profile

- Rogers and Castro (1981) proposed a mathematical equation with several parameters to model migration rates by age
- Migration age profiles can be summarized with two measures (Bernard, Bell, Charles-Edwards 2014)
 - Measure of migration intensity (M_h)
 - The highest value of the migration rate by age (vertical axis)
 - Measure of high peak age (x_h)
 - Age at which the migration rate reaches the highest value (horizontal axis)
- Jump (B) provides differences between rates of adolescents (x_l) and young adults (x_h)

Hypotheses

I. Profile stability

There is a stability in the migration age profile over time

2. Attraction of workers

Economically dynamic regions attract more workers, compared to out-migration from the same regions

3. Geographical scales

• Out-migration profiles for varying territorial scales have different levels, but not different patterns

4. Gender

• Mean age at labor force is higher for males compared to females, reflecting differentials of age at first marriage

5. Migration status

There are differences in the timing and spread of life course transitions between migrants and non-migrants

6. Mean age at transition

There is association between average ages of life course transitions and modal age of migration

Data and methods

- Utilize period microdata from the 1991, 2000, and 2010 Brazilian Demographic Censuses
 - Flows for different geographical scales: major regions, states, meso-regions, micro-regions, municipalities
 - Migration status based on residence 5 years before each census
- Evaluate age patterns of migration with Rogers-Castro model
- Estimate mean age at transition (Wachter 2006) based on
 - Proportion of people who made the change from one age group to the next
 - Expected proportion of the hypothetical cohort that will experience the transition
- Investigate timing, prevalence, and spread of migration for several life course transitions
 - Completion of basic education (primary and secondary)
 - Entry into the labor market
 - First marriage/union
 - First child (estimated only for women)

Regional division of Brazil for this study

Results for HI: Profile stability

- We observed stability in the migration age profile over time
- Lower differentials by sex for inter-regional migration, compared to intra-regional migration
- Age profile of migration is not similar for all regions throughout the country

0.040

0.035

0.030

tate 0.025

Migration 0.020 0.015

0.010

0.005

0.000

Midwest

—1986-1991 **—**1995-2000 **—**2005-2010

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Age

Results for H2: Attraction of workers

- The state of São Paulo has historically the highest levels of economic development and dynamism among the six analyzed regions
- São Paulo has been the main destination for migration flows in the country
 - In-migration age profile is predominantly of young adults with labor force dominance (20 and 25 years)
 - Low child dependency
- There was a reduction in the level of inter-regional migration in the last decades
 - São Paulo and the Northeast region were the only areas increasing participation in inter-regional flows, compared to intra-regional flows
- São Paulo increased out-migration flows compared to in-migration flows
 - Especially flows to the Northeast
 - Probably due to the growth of return migration

Inter-regional migration rates for São Paulo

Results for H3: Geographical scales

- Migration flows for several territorial scales by sex for 1986–1991, 1995–2000, 2005–2010
 - Results indicate similar migration patterns across different territorial scales
 - Migration level is higher among smaller territorial scales (shorter distances)
- There is negative association between level of migration and differences between rates of adolescents and young adults
 - Gross migraproduction rate (GMR) measures level of migration
 - Jump (B) provides differences between migration rates of adolescents and young adults
- Women have higher B, so they might be more affected by the timing of life course transitions

Example: Northeast

Results for H4: Gender

- Mean age at labor force is higher for men in short-distance migration, similar to age at first marriage
- Long-distance flows usually have smaller age differentials by sex, similar to labor market patterns

Results for H5: Migration status

- In 1991, differences between migrants and non-migrants were greater across life course transitions (completion of basic education, entry into the labor market, first marriage/union, first child)
- By 2010, there is a convergence of indicators of life course transitions, but migrants tend to transition to first union before non-migrants
- Female life course transitions happen faster, compared to the male population
 - Women have greater migration rates for short-distance flows
 - A possible explanation is that women have a more rigid social role compared to men, strongly associated with intra-household gender inequalities, limiting their long-distance migration rates

Results for H6: Mean age at transition

- In previous decades, migration rates were higher and more dispersed by age groups
- More recently, migration flows have concentrated around modal ages, closer to transition to first union
- From all life course transitions, first union is the most stable over time

Intermunicipal migrants, women

Final considerations

- Results indicate associations between migration and life course transitions
 - Timing of migration seems to be determined by the same social conditions of life course transitions
- There is a strong association between migration and timing of the first marriage/union
 - People migrate close to marriage (or marry close to migration)
 - Women have stronger associations between migration and life course transitions, especially age at first marriage/union
- Distance between areas of origin and destination is an important factor to understand migration
- This study provides an application of migration techniques for a developing country with census data, without the need to collect expensive longitudinal surveys to analyze sub-national migration flows
- Dr. Santos developed an application to easily model migration rates with Rogers and Castro mathematical equation (<u>https://demometrics.shinyapps.io/RogersCastroModel_LCmetrics/</u>)