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Objective
• Discuss spatial methodologies to better visualize 

socioeconomic inequalities within metropolitan 
areas

• Not viable with traditional measures of inequality

• We applied this methodology to investigate the 
complex structure of segregation in the 
Metropolitan Region of Goiânia (RMG), Brazil
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Motivation
• United Nations reports about the state of the 

world’s cities generated reactions from Brazilian 
politicians
– UN studies indicated high levels of economic inequality 

in several cities in Brazil

• Politicians did not take advantage of this debate 
to better understand inequality and segregation
– This would have been more helpful to implement 

adequate public policies for urban planning
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5Source: UN-Habitat, 2008.



UN-Habitat, 2008/2009
• Among 19 cities analyzed in Latin America and 

the Caribbean, these cities had extremely high 
inequality
– Gini coefficient above 0.60
– Goiânia, Brasília, Belo Horizonte, Fortaleza, São 

Paulo, Bogotá
• The Goiânia mayor Iris Rezende Machado 

(2005–2010) reacted
– The UN did not utilize an appropriate methodology
– Goiânia doesn’t have “slums”
http://www.jornaldiariodonorte.com.br/noticias/goiania-cidade-das-desigualdades-2803

6Source: UN-Habitat, 2008, p.68.

http://www.jornaldiariodonorte.com.br/noticias/goiania-cidade-das-desigualdades-2803


7Source: UN-Habitat, 2010.



UN-Habitat, 2010/2011
• Among 24 cities analyzed in Latin America and 

the Caribbean

• Goiânia had the highest inequality

• Gini coefficient = 0.65 (2005 data)

8Source: UN-Habitat, 2010, p.193.



9Source: UN-Habitat, 2016.



UN-Habitat, 2016
• Among 32 cities analyzed in Latin America and 

the Caribbean
• Goiânia had the second highest inequality

– Gini coefficient = 0.65 (2005 data)
• Brasília and Curitiba had the highest inequality

– Gini coefficient = 0.67 (2009 data)
• Considering all other 153 cities in 74 countries, 

only 9 cities in South Africa had higher inequality 
than Goiânia
– Gini coefficients from 0.67 to 0.75 (2005 data)

10Source: UN-Habitat, 2016, p.206–207.



The politician reacted again
• In July 2016, in one of his letters announcing the 

end of his political career, Machado wrote
– Goiânia doesn’t coexist with “slums” (“Goiânia não

convive com favelas”)
– Goiânia is the only one that doesn’t coexist with a lack 

of treated water (“[Goiânia é a] única que não convive 
com a falta de água tratada”)

• At the end of 2016, Machado ran for mayor and 
was elected for the 2017–2020 mandate

11Source: http://www.dm.com.br/politica/2016/07/iris-diz-em-carta-que-nao-sera-candidato-a-prefeito-de-goiania.html.

http://www.dm.com.br/politica/2016/07/iris-diz-em-carta-que-nao-sera-candidato-a-prefeito-de-goiania.html


Goiânia in 2010
• Goiânia had 423,297 occupied households

– 1,066 households (0.25%) were situated in seven 
irregular communities (“aglomerados subnormais”)

– 92.97% of households had a regular water supply

• Studies that utilize global indicators do not allow 
us to understand complex spatial inequalities 
within a metropolitan area

12Source: 2010 Brazilian Demographic Census.



Controversy
• How is it possible that Goiânia

– Is one of the most unequal cities in the word?
– Does not have “slums”?
– Provides adequate public infrastructure to its 

population?

• Goiânia is not an isolated municipality
– It is integrated with neighboring municipalities
– “Slums” are not the only segregated spaces
– We need to analyze several indicators and variations 

within the metropolitan region
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RMG population, 1950–2010

14Source: 1950–2010 Brazilian Demographic Censuses.
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Data
• 2010 Brazilian Demographic Census (IBGE 2010)

– Aggregated data by 2,889 RMG census tracts

• Spatial distribution of socioeconomic indicators 
throughout census tracts
– Household income per capita
– Education (percentage literate)
– Color/race (percentage white)
– Households with regular water supply
– Households with daily garbage collection service
– Households with regular sewer system
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Methods
• We characterize spatial segregation patterns

• In the analysis of spatial association, we 
recognize that people are not randomly 
distributed over space

• Neighboring areas tend to be more similar to
each other than areas situated a greater distance 
apart
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Moran’s I
• Moran’s I statistic is the most commonly used

indicator of global spatial autocorrelation (Anselin 2018)

– It is the result of a comparison between a specific 
spatial variable and its corresponding spatially lagged 
variable

• The lagged variable is the characteristic of the 
neighboring census tracts for each one of the 
analyzed census tracts
– Neighboring areas are defined as all areas sharing a 

border (queen contiguity)
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Hypothesis testing
• Moran’s I is based on a null hypothesis of spatial 

randomness
– Each value is equally likely to occur at any location

• This indicator tests if people and households with 
specific characteristics are randomly distributed 
throughout RMG census tracts
– If people and households with specific characteristics 

are concentrated in certain census tracts (p<0.05), the 
null hypothesis of spatial randomness is rejected
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Local spatial autocorrelation
• The local indicator of spatial association (LISA) 

identifies spatial clusters and spatial outliers
– LISA allows for the decomposition of global indicators 

into the contribution of each individual area (Anselin 1995, 

2019)

– LISA was estimated in GeoDa
• https://spatial.uchicago.edu/geoda

– Maps were formatted in QGIS

• https://qgis.org

• LISA classifies areas considering information 
about indicators of surrounding areas
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Spatial clusters and outliers
• Spatial clusters

– Areas with high levels of a specific indicator surrounded 
by areas with high levels for that indicator (high-high)

– Areas with low levels of a specific indicator surrounded 
by areas with low levels for that indicator (low-low)

• Spatial outliers
– Areas with high levels of a specific indicator surrounded 

by areas with low levels for that indicator (high-low)

– Areas with low levels of a specific indicator surrounded 
by areas with high levels for that indicator (low-high)
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21Source: Complementary laws #27 (12/30/1999), #48 (12/09/2004), #54 (05/23/2005), #78 (03/25/2010).
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22Source: 2010 Brazilian Demographic Census.

2,889 census tracts within 20 municipalities

Municipality
Census tract



23Source: 2010 Brazilian Demographic Census.

Household income per capita
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24Source: 2010 Brazilian Demographic Census.

Household income per capita
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25Source: 2010 Brazilian Demographic Census.
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26Source: 2010 Brazilian Demographic Census.
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27Source: 2010 Brazilian Demographic Census.
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28Source: 2010 Brazilian Demographic Census.
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29Source: 2010 Brazilian Demographic Census.
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30Source: 2010 Brazilian Demographic Census.
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31Source: 2010 Brazilian Demographic Census.
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32Source: 2010 Brazilian Demographic Census.

Households with daily garbage collection service
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Moran’s I: 0.4751 (pseudo p-value: 0.001) 



33Source: 2010 Brazilian Demographic Census.
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34Source: 2010 Brazilian Demographic Census.
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Summary diagram
• We developed a critical approach to illustrate the 

spatial structure of segregation in the 
metropolitan region

• The intention was to take advantage of the 
quantitative analysis and provide a deeper 
interpretative summary about the region

35
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Summary
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First ring
• Stable area with various income levels and lower 

levels of segregation (first grey ring)
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– Rich areas in the center (red)
– Other rich areas

• Santo Antônio de Goiás (North)
• Hidrolândia (South)

– Blue circles within first ring 
(Northeast and East)
• Poor satellites surrounding rich 

areas



Second ring
• Large poor area farther away from central areas 

(second blue ring)
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• “Peripheric centers” 
(grey circles) within 
large poor area
– Various income levels
– Lower levels of 

segregation



Third ring
• Another stable area with various income levels 

and lower levels of segregation (third grey ring)
– South and Southeast
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• Poor areas in the 
Southeast (blue circles)
– Hidrolândia
– Bela Vista de Goiás



Final considerations
• Main results indicate that RMG does not have a 

simple centrality or a multi-centrality
– There are a series of concentric rings with different 

types of centralities

• These areas function in an integrated and 
segregated system (not inclusive)
– It cannot be summarized by global measures of 

inequality (Gini) or spatial distribution (Moran’s I)
– It cannot be understood by only analyzing the 

municipality of Goiânia
40



Future research
• Provide an analysis of spatial segregation 

patterns over time to better understand changes 
in the urban space

• Investigate relationship between migration flows 
and public policies

• Continue with an interdisciplinary approach
– These studies are essential to develop well-informed 

urban planning policies to deal with issues of spatial 
segregation
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Spatial models
• Spatial models can estimate multivariate models 

to verify the association
– Of several independent variables (e.g., age, education, 

color/race, occupation, migration, fertility)

– With a specific dependent variable (e.g., income)

• These models deal with spatial dependence by 
measuring the influence of neighboring areas for 
several variables at the same time (Anselin, Rey 2014; LeSage, 
Pace 2009)

– Spatial autoregressive models
42
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