Estimating migration flows at the local level in the US

Ernesto F. L. Amaral

November 20, 2018 Workshop: Uncertainty and Complexity of Migration

Objective

- Estimate factors associated with internal and international migration flows at the local level in the US
 - 1950–2000 Demographic Censuses
 - 2005–2016 American Community Surveys (ACS)
- Analyze restricted data at the Texas Research Data Center (TXRDC) at Texas A&M University
 - Block group and county of current residence
 - County of residence five years (census) or one year (ACS) before the survey
- Estimate individual- and area-level models
 - This exercise was not previously performed using a historical perspective at the local level in the US

Individual-level models

- Multinomial logistic regressions will estimate the association of independent variables with a dependent variable related to migration status
 - Internal migrants are those who resided in another county in the US five years (census) or one year (ACS) before the survey
 - <u>Short-term immigrants</u> are those who resided in another country five years (census) or one year (ACS) before the survey
 - Long-term immigrants are those born in another country
 - <u>Non-migrants</u> are natives who resided in the same county in previous years

Sample by migration status and race/ethnicity, 2011–2015

Migration status	White	African American	Hispanic	Asian	Native American	Other races	Total
Internal migrant	4.69	5.76	3.31	1.86	4.53	6.31	4.51
Short-term immigrant	0.32	0.43	0.78	2.92	0.24	0.84	0.53
Long-term immigrant	4.05	8.23	34.76	64.42	1.11	11.72	11.79
Non-migrant	90.94	85.58	61.16	30.79	94.11	81.12	83.17
Sample size	10,722,931	1,634,504	2,189,075	763,531	153,099	354,317	15,817,457

Source: 2011–2015 American Community Surveys (ACS), Five-Year Sample.

Independent variables

- Individual characteristics
 - Age
 - Sex
 - Race/ethnicity
 - Educational attainment
 - Marital status
 - Labor force status
 - Occupation and industry
- Household characteristics
 - Number of own family members
 - Number of own children
 - Number of own children under age five
- Contextual characteristics

Area-level models

- Poisson regression models will estimate variations of area-level counts of migrants, as the dependent variable
- Gravity models
 - These models will have a set of independent variables, including distance between areas
- Spatial models
 - Influence of neighboring areas at origin and destination on the likelihood of migrating, using a Bayesian statistics approach (Anselin, Rey 2014, LeSage, Pace 2008, 2009)
- Integration of individual-level and area-level models
 - Distance and spatial terms will be introduced in the individuallevel models as additional sets of predictors

Gravity models

Poisson models will use population at the beginning of the period (*P_i*), population at the end of the period (*P_j*), and distance between areas (*d_{ij}*) to estimate migration flows (Head 2000; Lowry 1966; Pöyhönen 1963; Stillwell 2005, 2009; Tinbergen 1962)

$M_{ij} = exp(b_0 + b_1 \log P_i + b_2 \log P_j + b_3 \log d_{ij}) + \varepsilon_{ij}$

- M_{ij} : counts of migrants at the end of the period between areas of origin (*i*) and destination (*j*)
- b_0 : constant
- b_1 : coefficient associated with the population in area of origin at the beginning of the period (P_i)
- b_2 : coefficient associated with the population in area of destination at the end of the period (P_j)
- b_3 : coefficient related to the distance between areas (d_{ij})
- ε_{ii} : random error term associated with all pairs of areas

Spatial models

• The general spatial autoregressive model takes into account origin, destination, and origin-to-destination dependence (LeSage, Pace 2008, 2009)

 $y = \rho_d W_d y + \rho_o W_o y + \rho_w W_w y + \alpha \iota_N + X_d \beta_d + X_o \beta_o + \gamma g + \varepsilon$

- $-W_d$: spatial dependence at the destination
- $-W_o$: spatial dependence at the origin
- $-W_w$: interaction between origin and destination neighbors
- X_d : characteristics for each of the regions of destination
- X_o : characteristics for each of the regions of origin
- Scalar γ : effect of distance g
- α : constant term parameter on ι_N regions

Agent-based models

- Agent-based models can incorporate interactions between individual decisions, behavioral responses, and social networks related to migration outcomes (Massey, Zenteno 1999; Klabunde, Willekens 2016; Klabunde et al. 2017)
- These models can formalize interconnections and simulate potential feedback relationships between migration streams and several endogenous predictors
 - Education systems
 - Labor markets
 - Healthcare systems
 - Migration policies, border security
 - Social networks
- Agent-based models allow us to build different scenarios and simulate future population flows (Kabunde et al. 2017)

Model migration flows in the US

References

- Anselin L, Rey SJ. 2014. Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. Chicago: GeoDa Press LLC.
- Bijak J, Hilton J, Silverman E, Cao VD. 2013. "Reforging the Wedding Ring: Exploring a Semi-Artificial Model of Population for the United Kingdom with Gaussian process emulators." Demographic Research, 29(27): 729–766.

Cirillo P, Gallegati M. 2012. "The Empirical Validation of an Agent-based Model." Eastern Economic Journal, 38: 525–547.

- Grazzini J, Richiardi M. 2015. "Estimation of ergodic agent-based models by simulated minimum distance." Journal of Economic Dynamics & Control, 51: 148–165.
- Head K. 2000. "Gravity for beginners." Rethinking the Line: The Canada-U.S. Border Conference, Vancouver, British Columbia.
- Klabunde A, Willekens F. 2016. "Decision-making in agent-based models of migration: State of the art and challenges." European Journal of Population, 32(1): 73–97.
- Klabunde A, Zinn S, Willekens F, Leuchter M. 2017. "Multistate modelling extended by behavioural rules: An application to migration." Population Studies, 71(S1): S51–S67.
- LeSage JP, Pace RK. 2008. "Spatial econometric modeling of origin-destination flows." Journal of Regional Science, 48(5): 941–967.
- LeSage JP, Pace RK. 2009. Introduction to Spatial Econometrics. Boca Raton: CRC Press, Taylor & Francis Group.
- Lowry IS. 1966. Migration and Metropolitan Growth: Two Analytical Models. San Francisco: Chandler Publishing.
- Massey DS, Zenteno RM. 1999. "The dynamics of mass migration." Proceedings of the National Academy of Sciences (PNAS), 96: 5328–5335.
- Poole D, Raftery AE. 2000. "Inference for deterministic simulation models: The Bayesian melding approach." Journal of the American Statistical Association, 95(452): 1244–1255.

Pöyhönen P. 1963. "A tentative model for the volume of trade between countries." Weltwirtschaftliches Archiv, 90: 93–100.

- Stillwell, J. 2005. "Inter-regional migration modelling: A review and assessment." 45th Congress of the European Regional Science Association, Vrije Universiteit Amsterdam, The Netherlands, August, 23–27.
- Stillwell, J. 2009. "Inter-regional migration modelling: A review." In Migration and Human Capital, edited by Jacques Poot, Brigitte Waldorf and Leo van Wissen, 29–48. Cheltenham: Edward Elgar Publishing.
- Tinbergen, J. 1962. Shaping the World Economy: Suggestions for an International Economic Policy. New York: Twentieth Century Fund.

